Categoria: formulae.app / Matemáticas / Transformada Z / Tabla de Transformada Z
δ[n]
1
Toda z
δ[n-m]
z-m
Toda z excepto
0 (si m>0) ó
∞ (si m<0)
μ[n]
$$\frac{z}{z-1}$$
$$\frac{1}{1-z^{-1}}$$
|z|>1
-μ[-n-1]
$$\frac{z}{z-1}$$
$$\frac{1}{1-z^{-1}}$$
|z|<1
n μ[n]
$$\frac{z}{(z-1)^2}$$
$$\frac{z^{-1}}{(1- z^{-1})^2}$$
|z|>1
n2 μ[n]
$$\frac{z(z+1)}{(z-1)^3}$$
n3 μ[n]
$$\frac{z(z^2 + 4z + 1)}{(z-1)^4}$$
γn μ[n]
$$\frac{z}{z-\gamma}$$
$$\frac{1}{1-\gamma z^{-1}}$$
|z|>|γ|
-γn μ[-n-1]
$$\frac{z}{z-\gamma}$$
$$\frac{1}{1-\gamma z^{-1}}$$
|z|<|γ|
γn-1 μ[n-1]
$$\frac{1}{z-\gamma}$$
n γn μ[n]
$$\frac{\gamma z}{(z-\gamma)^2}$$
$$\frac{\gamma z^{-1}}{(1- \gamma z^{-1})^2}$$
|z|>|γ|
-n γn μ[-n-1]
$$\frac{\gamma z}{(z-\gamma)^2}$$
$$\frac{\gamma z^{-1}}{(1- \gamma z^{-1})^2}$$
|z|<|γ|
(n+1) γn μ[n]
$$\Big[ \frac{z}{z-\gamma}\Big]^2$$
$$\frac{1}{(1- \gamma z^{-1})^2}$$
|z|>|γ|
n2 γn μ[n]
$$\frac{\gamma z (z + \gamma)}{(z - \gamma)^3 }$$
$$\frac{n(n-1)(n-2) \text{...} (n-m+1)}{\gamma^m m!}\gamma^n \mu[n]$$
$$\frac{ z}{(z-\gamma)^{m+1}}$$
|γ|n cos(βn) μ[n]
$$\frac{ z \big(z-|\gamma | \cos (\beta ) \big)}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2}$$
|γ|n sin(βn) μ[n]
$$\frac{ z |\gamma | \sin (\beta )}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2}$$
r|γ|n cos(βn+θ) μ[n]
$$\frac{ rz[z \cos (\theta) - |\gamma | \cos (\beta -\theta)]}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2}$$
r|γ|n cos(γn+θ) μ[n]
γ = |γ| ejβ
$$\frac{\big(0.5r e^{j \theta} \big)z}{z - \gamma} + \frac{\big(0.5r e^{-j \theta} \big)z}{z - \gamma^{*}}$$
r|γ|n cos(γn+θ) μ[n]
$$r = \sqrt{\frac{A^2|\gamma |^2 + B^2 - 2AaB}{|\gamma |^2 - a^2}}$$
$$\frac{z(Az +B)}{z^2 + 2az + |\gamma|2}$$
$$\beta = \cos ^{-1} \frac{-a}{|\gamma |}$$
$$$\theta = tan^{-1} \frac{ Aa - B}{A \sqrt{|\gamma |^2 - a^2}}$$
{an ; 0≤ n ≤ N-1
{0 ; otro caso
$$\frac{1-a^N z^{-n}}{1-az^{-1}}$$
|z|>0