Categoria: formulae.app / Matemáticas / Geometría / Ecuación general de la Circunferencia
La ecuación general de la circunferencia es una forma de representar una circunferencia en un plano cartesiano. Nos permite describir la relación entre los puntos de la circunferencia utilizando una fórmula matemática.
La ecuación general de la circunferencia se expresa de la siguiente manera:
(x - h)^2 + (y - k)^2 = r^2
Donde (h, k) representa las coordenadas del centro de la circunferencia, y r representa el radio de la circunferencia.
Para determinar la ecuación de una circunferencia, necesitamos conocer las coordenadas del centro (h, k) y el radio r. Con estos datos, podemos sustituir los valores en la fórmula y obtener la ecuación de la circunferencia.
Por ejemplo, si tenemos una circunferencia con centro C(2, -3) y radio r = 5, podemos encontrar la ecuación de la circunferencia de la siguiente manera:
(x - h)^2 + (y - k)^2 = r^2
(x - 2)^2 + (y - (-3))^2 = 5^2
(x - 2)^2 + (y + 3)^2 = 25
Por lo tanto, la ecuación general de la circunferencia con centro C(2, -3) y radio r = 5 es (x - 2)^2 + (y + 3)^2 = 25.
La ecuación general de la circunferencia es una herramienta importante en geometría y tiene aplicaciones en diversas áreas, como la física, la geometría analítica y la ingeniería.
$$x^2+y^2+Ax+By+C=0$$
$$\text{En el origen: }x^2+y^2 = r^2$$
$$\text{Fuera del origen: }(x-h)^2+(y-k)^2 = r^2$$